A Non-linear, Sub-grid Embedded Finite Element Basis for Accurate Monotone Steady Cfd Solutions

نویسنده

  • Subrata Roy
چکیده

A non-linear sub-grid embedded (SGM) nite element basis is derived for generating accurate monotone solutions to a CFD weak statement algorithm. The developed theory connrms that only the second derivative (diiusion) term is appropriate for the SGM construction, which employs element-level static condensation for eeciency and consistency. In comparison to other high resolution methods, advantages of the SGM element formulation include arbitrary (Lagrange) embedding degree, no explicitly added artiicial diiusion term, no ux limiters or switches, improved condition number for the jacobian matrix and excellent algorithm stability. The statically-condensed SGM construction retains linear basis bandwidth, for all problem dimensions, hence exhibits no storage penalty for element or system matrices. Numerical results for 1-D, 2-D and 3-D veriica-tion/benchmark linear and nonlinear convection-diiusion problems in steady state are presented, connrming theoretical predictions for nodally exact and monotone solutions on minimal degree-of-freedom meshes. As a side beneet, commensurate high order accuracy accrues to wall ux prediction on these coarse meshes, via a matrix manipulation on the weak statement algebraic construction. 1 NOMENCLATURE a i expansion coeecient r,r j ,r ij distributed SGM parameter A scalar constant R element right of node j c,c j continuum SGM parameter R statically reduced matrix d dimension of the problem fRg solution residual vector det e transformation matrix determinant < d real d dimensional space D k ] e Lagrange diiusion matrix < + temporal half space D S ] e SGM diiusion matrix Re Reynolds number e nite element s source term f(m) function of m S SGM polynomial degree f j kinematic ux vector S e element matrix assembly operator f v j viscous ux vector t time F, F ij SGM (correlation) function u j ,U velocity vector fFQg Newton residual vector U] e convection matrix g,g i SGM element embedding function jUj absolute value of velocity U fGg nodally distributed SGM vector V e volume (area) of a nite element h,h e ,h ij nite element length measure x j spatial coordinates JAC] jacobian matrix SGM polynomial function of c k Lagrange polynomial degree ,, coeecients in assembly stencil L element left of node j , i physical diiusion coeecient L partial diierential equation operator ij Kronecker delta M] assembled mass (interpolation) matrix t computational time step fN k g Lagrange element basis function of degree k , i local natural coordinate fN S g SGM element basis function of degree S , …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Some Recent Adventures into Improved

The quest continues for computational uid dynamics (CFD) algorithms that are accurate and eecient for convection-dominated applications including shocks, travelling fronts and wall-layers. The boundary-value "optimal" Galerkin weak statement invariably requires manipulation, either in the test space or in an augmented form for the conservation law system, to handle the disruptive character intr...

متن کامل

International Journal for Numerical Methods in Fluids

The quest continues for accurate and efficient computational fluid dynamics (CFD) algorithms for convection-dominated flows. The boundary value ‘optimal’ Galerkin weak statement invariably requires manipulation to handle the disruptive character introduced by the discretized first-order convection term. An incredible variety of methodologies have been derived and examined to address this issue,...

متن کامل

Coupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material

This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...

متن کامل

Nonlinear Subgrid Embedded Element-free Galerkin Method for Monotone Cfd Solutions

Achieving stable, accurate, monotone and efficient (SAME) discrete approximate solution is of tremendous interest for convection-dominated computational fluid dynamics (CFD) applications. Recently, a non-linear SubGrid eMbedded (SGM) finite element basis was developed for generating multidimensional SAME solutions via the weak statement (WS). The theory confirms that only the Navier-Stokes diss...

متن کامل

Non Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations

Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997